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VORTICAL SINGULARITY OF SELF-SIMILAR GAS FLOW IN THE REFLECTION 

OF A SHOCK WAVE 

E. F. Zhigalko, L. L. Kolyshkina, 
and V. D. Shevtsov 

UDC 533.6.011 

We consider the problem of the transient gas flow developing when a plane shock wave, 
propagating through a stationary homogeneous gas 0 and characterized by a Math number M = 
u/ao, strikes a rigid impermeable wall forming a wedge with an angle 8 at the time t = 0. 
We consider the case in which the angle 8 is large enough that the wave configuration 
represented in Fig. 1 developed in the interaction, where CD is the incident wave, BC is 
the regularly reflected wave, BE is the front of the rarefaction wave propagating from AO 
through the region of uniform flow 2, AB is the diffracted wave, and 3 is the region of non- 
uniform flow. In the absence of a characteristic size the problem is self-similar with 
arguments x = X/t and y = Y/t. 

In the case of 0 § ~/2 [I, 2], u=w = 0 at point O, i.e., the flow is stagnant. An 
asymptotic analysis as ~ § O indicates that in the vicinity of point 0 flow takes place around 
the corner with conservation of most of the X component of the velocity. One can assume 
that in the intermediate case of e < 7/2 flow around the corner takes place near point 0 and 
gas particles which have entered 3 through point A on the diffracted shock wave are located 
at the wall OE (at some part of it) adjacent to point O. On the other hand, obviously, 
particles which have entered 3 from 2 under the action of the rarefaction wave BE are 
located on the part of the wall OE adjacent to point E. The point separating the gas which 
has reached OE in different ways is designated as F in Fig. 1. 

If one assumes that the gas is nonviscous and thermally nonconducting, then one can 
state that the entropy per particle is conserved during motion inside 3, and therefore 
particles on different sides of point F have different entropies and, because of the con- 
tinuity of pressure, different densities. Point F, a vortical flow singularity [3, 4] of 
the type under consideration, corresponds to a Furry singularity of conical gas flows [5]. 

The vortical singularity (VS) at point F is an essential element of the fundamental 
problem of reflection of a shock wave from a wedge under consideration. In each of the 
approaches (analytical, numerical, or experimental) the motifs connected with its existence 
must be taken into account. Very satisfactory results obtained using a variant of a numeri- 
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cal scheme with isolation of the shock, in the construction of which the presence of a 
vortical singularity was taken into account, to calculate the flow in 3 are reported in [3], 
for example. 

From the foregoing it follows that a particle which was at point 0 at the moment of 
arrival of the incident shock wave at it is located at F, i.e., point F is the origin of 
self-similarity in the Lagrangian coordinates. We can show that all the particle trajec- 
tories in the self-similar flow in 3 converge at point F of the xy plane. 

Let us consider two times t, and t2, t, < t2 and t~ > 0. At the scale of t2p region 
3, as it was at the time t~ in the XY plane, can be taken as the vicinity of point 0, while 
the time t~ itself can be taken as close to zero. From the fact that F is the Lagrangian 
coordinate of the particle which was at point 0 at the time t = 0 it follows that by the 
time t2 the particles distributed over region 3 at the time t, are drawn together toward 
point F (at the scale t2). The interpretation of the corresponding theorem from the theory 
of conical flows [5] in the case of flow under consideration can be made the formal basis 
of this conclusion. 

In the XY plane at the time tlwe introduce a 
inside 3. Gas particles with a mass m are located 
Z(t,) bounded by L. The motion of these particles 
certain stream tube with a cross section l(t). We 

certain closed loop L(t~) lying entirely 
in the part of region 3 with an area 
in the space XYt takes place inside a 
designate the transform of L(t) in the 

xy plane as Z(t). Evidently, the area o(t) of the figure bounded by Z is o(t) = (i/t2)Z(t). 
Then we introduce into the analysis Pe, the lower estimate for Pa (0~ > Pc), and then 
Z(t) = m/p3av < m/Pc = const = Z*. 

This means that (I/t2)Z * is an upper estimate for o(t). Consequently, the fluid loop 
l(t) in xy contracts with an increase in t, while the streamlines in xy converge to singular 
points or a profile. If we repeat the above for a loop L which partially coincides with the 
wall, then we find that any fluid loop contracts toward the wall. Hence a singularity is 
located at the wall. It was found above that two gas particles which were adjacent near 
point F entered 3 by traveling the paths AOF and EF (in the xy plane), respectively. There- 
fore, streamlines of the nonuniform flow 3 in the xy plane converge toward a singular point 
which lies at the wall, coincides with F, and is unique. 

From the smoothness of the shock wave ABCit follows that this point is a singularity 
of the "node" type for density and entropy. It is appropriate to note that a smooth re- 
flected shock wave does not generate a contact discontinuity at point B, while at BF, the 
line separating the gas which passed through AB and BC, the density is continuous down to F. 

The fundamental possibility of analyzing the flow in the vicinity of a VS is connected 
with the use of a solution of the problem for flow in 3 which is linear with respect to 

= ~/2 -- 8 [2]. In this solution an equation is obtained for p = (ps -- p2)/02~ (• = 7/5, 
the designations of the parameters are standard, and the index corresponds to the number of 
the zone), 

e (x,  y)  = ~ ,  - - '  ~ ( 1 )  

I tan .~k AOB, p(x,y), Y--x >~ 

where 
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(the remaining C i are coefficients defined in [2]). Several important conclusions follow 
from Eq. (I). First, point F is located in xy at a distance of %6 from the point 0, i.e., 
the velocity of a particle coinciding with F has the order 6. Second, the variation of p 
from ray to ray in the sector BFE is small (0(6)) and is important only in the sector BFO, 
where it has the order 6. Finally, most of the increment of density in the fan from the ray 
FO to the ray FC is 

P~.~ -- P2 
[~1~ ~ (co - ~) ~ ~ (2) 

These results open up the most interesting properties of VS for the most part. The diffi- 
culty of experimental observation of VS is primarily connected with the local nature of the 
phenomenon and the small size of the inhomogeneity . We can also note that the action of 
transfer effects inherent to a real gas smears out the picture and makes the experiment 
difficult. There are no data in the literature [3, 4, 6-8] on the experimental observation 
of VS. 

All the same, having suitably selected the experimental regime, one can clearly ob- 
serve the flow pattern in the vicinity of a vortical singularity. In this case one must 
strive to use a method with high spatial resolution and avoid submerging the VS in the de- 
veloped boundary layer at the wall, which, although it does not prevent recording the VS, 
still distorts the picture somewhat. 

To observe a vortical singularity in an air shock tube (without evacuation) with a 
rectangular cross setion of 80 • 130 mm we used a diffraction interferometer assembled on a 
shadow instrument operating with a full shift of the wavefronts. In this way it is con- 
verted into an interferometer of the Mach--Zehnder type. Photographs were made on aerial 
photography film 320 mm wide, and the number of bands in the field reached 200. To improve 
the spatial resolution it is desirable to adjust the interferometer for the closest pos- 
sible bands. 

In Fig. 2a-b we give characteristic results obtained for a wedge with 6 = 20 ~ and M = 
1.772 and 1.796, respectively. In the photographs a section of the wall coincides with the 
lower edge. A magnified fragment of the field in the vicinity of points 0 and F is given, 
since in printing it is difficult to clearly reproduce an entire interferogram in such close 
bands. The fronts of waves ABC and BE lie outside the frame. We can note that a theoreti- 
cal estimate of the thickness of the transient boundary layer in the vicinity of a VS leads 
to a value of ~0.I-0.5 band width. 
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A vortical singularity is revealed by the characteristic behavior of the bands in its 
vicinity, and the coordinates of the VS can be determined with an accuracy of several per- 
cent. This is a unique possibility for the direct determination of the gas velocity at a 
characteristic point of the flow. 

The density distribution in the flow field can be obtained from an interferogram. The 
result corresponding to Fig. 2a is given in Fig. 3a. Lines of constant density converge in 
a fan at a singular point of the "node" type. A comparison of the results of the inter- 
pretation and Fig. 2a increases the accuracy in determining the coordinates of the VS. The 
density distribution right along the wall is given in Fig. 3b (s is the coordinate measured 
along the wall from the vertex 0). 

Equation (2) gives a value of 0.052po for the discontinuity in density at point F in 
this case. This result is very close to the value represented in Fig. 3b, despite the fact 
that the angle 6 is not particularly small in the given case. As was mentioned, the density 
distribution differs from an ideal one because of the presence of transfer processes. The 
lengths in Fig. 3 are normalized to the distances from the vertex to the incident wave (ut). 
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As to the interferogram, it is desirable to fix the source function of quantitative 
information about the VS, and it is most convenient to observe this phenomenon on a color 
shadow diagram. The eye distinguishes color gradations more effectively than gradations 
of gray or microscopic deviations of lines on an interferogram. We obtained color shadow 
diagrams from interferograms with the closest bands [9], which act as holograms in this 
case. In our experiments we first saw the VS on the color shadow diagrams and then es- 
tablished that the singular point moves along the surface of the wedge from the vertex of 
the corner with a constant velocity. In a color picture the VS shows up in the form of a 
contrasting color spot. In it one can also observe a band moving from the vortical singu- 
larity toward the point of encounter of the regularly reflected shock wave and the bow 
rarefaction wave (point B). 

From the analysis given above it follows that contact between the gas which entered 3 
through AB and the gas which passed through BE takes place in the region of the band. Since 
BE is a rarefaction wave, there is no density discontinuity, and we can assume that the 
method reveals a nonuniform distribution of the density gradient in the region of the "con- 
tact surface" BF. A contrasting formation, a "contact surface," emerges in a similar way 
from the point of encounter of incident and diffracted shock waves and of the rarefaction 
wave in shadow photographs of the flow field arising in the diffraction of a shock wave near 
a flat corner [6, 7]. As in 3, at this surface there is no density discontinuity, in con- 
trast to the contact surface of their ensemble of a three-shock configuration. 

In the diffraction of a shock wave near a flat corner there is also a vortical singu- 
larity, fully analogous to that discussed above. However, the conditions of the experiment 
with a VS in the reflection problem are more favorable, since in this case the gas velocity 
relative to the wall in the vicinity of the singular point is low and transfer effects do 
not deviate the phenomenon too much from the ideal model. 
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